Exploring chemoselective S-to-N acyl transfer reactions in synthesis and chemical biology
نویسندگان
چکیده
C hemoselectivity refers to the preferential reaction of a single chemical reagent with one of two or more different functional groups1. One of the most formidable challenges presented to synthetic chemists involves achieving high levels of chemoselectivity and regioselectivity amongst the myriad of reactive functionalities present in biological systems. Despite the onerous challenges, chemists continue to discover and develop robust and efficient chemical ligation methodologies that enable exquisitely high levels of selectivity2–4. The chemoselective formation of amide bonds is a critical reaction in biology for protein synthesis and post-translational modification of proteins (PTMs), it is also widely utilized in organic synthesis and medicinal chemistry5–7. Amide bond formation requires chemoselective ligations that can furnish specific amide products in the presence of functional groups such as unprotected amines, carboxylic acids and alcohols6,7. The chemoselectivity of the S-to-N acyl transfer process arises from the unique reactivity of thioesters that renders them ideal intermediates for acyl transfer processes. Thioesters have been found to be more reactive then the corresponding oxoesters towards most nucleophiles (with the notable exception of hydroxide and alkoxides). The enhanced reactivity of thioesters may be due to a poor C-S p overlap that lowers the overall thermodynamic stability of the thioester relative to the oxoester8–10. Thioesters have been exploited as reactive intermediates by chemists to perform sophisticated ligation reactions under neutral conditions in an aqueous environment and have inspired a recent surge in the development of synthetic and biosynthetic ligation methodologies11–15. Efficient cascade processes involving thioester formation and subsequent acyl transfer to N-, Oor Segroups are at the core of several critical biological processes14. For example, Acetoacetyl-CoA functions as an efficient acyl transfer reagent in the Krebs cycle16. Thioesters are also key intermediates in protein ubiquitination17,18, intein splicing19,20 and the covalent modification of bacterial cell-surface proteins21,22. Thioesters are formed in transglutamination and in glutathione (GSH) biosynthesis. The abundance of thioester mediated processes in nature has led to speculation regarding the role of these derivatives in the origin of life23. In this review we DOI: 10.1038/ncomms15655 OPEN
منابع مشابه
An efficient synthesis of trisubstituted oxazoles via chemoselective O-acylations and intramolecular Wittig reactions.
Preparation of new types of trisubstituted oxazoles is realized via chemoselective O-acylations and intramolecular Wittig reactions with ester functionalities using in situ formed phosphorus ylides as key intermediates. A plausible reaction mechanism for this undiscovered chemistry is also proposed based on the existence of expected and rearranged isomeric oxazoles.
متن کاملTETRA-N-BUTYLAMMONIUM FLUORIDE AS A NOVEL REAGENT FOR THE PREPARATION OF ACYCLO-NUCLEOSIDES. THE SYNTHESIS OF 9- [(2-HYDROXYETHOXY) METHYL] ADENINE, BITAMYCIN.
The synthesis of the title compound, bitamycin, by means of BU4NF is described. This new antiviral drug was found to be one of the most powerful and least toxic substances for antiviral therapy in man. The physical and chemical behavior as well as the antiviral activities and clinical properties of this compound were found to be significantly different from that reported by Schaeffer, et a...
متن کاملAccelerating chemoselective peptide bond formation using bis(2-selenylethyl)amido peptide selenoester surrogates.
Given the potential of peptide selenoesters for protein total synthesis and the paucity of methods for the synthesis of these sensitive peptide derivatives, we sought to explore the usefulness of the bis(2-selenylethyl)amido (SeEA) group, i.e. the selenium analog of the bis(2-sulfanylethyl)amido (SEA) group, for accelerating peptide bond formation. A chemoselective exchange process operating in...
متن کاملA New Method for the Synthesis of New Derivatives of “1,3- diaryl-2-n-azaphenalene and n-acyl-1,3-diaryl-2-N-azephenylene” by Using Nano catalyst and Analyzing Antibacterial Activity of Structures
In this research, synthesized well derivatives of 1,3-diaryl-2-N-azaphenalene and N-acyl-1.3-diaryl-2-N- azaphenalene as a macromolecule in the presence of nanoparticles (Fe3O4 coated with L-Arginine)as a magnetic Nano catalyst in a one-pot reaction of compounds 7.2-Naphthalene diol, aldehydes,ammonium derivatives (ammonium acetate or ammonium hydro phosphates) and solvent (wa...
متن کاملChemical synthesis of circular proteins.
Circular proteins, once thought to be rare, are now commonly found in plants. Their chemical synthesis, once thought to be difficult, is now readily achievable. The enabling methodology is largely due to the advances in entropic chemical ligation to overcome the entropy barrier in coupling the N- and C-terminal ends of large peptide segments for either intermolecular ligation or intramolecular ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017